KLA

Toward Zero Defect: Automotive Fab Best Practices for Assessing "Best Performing Tools"

John C. Robinson, Ph.D. Doug Sutherland, Ph.D. David W. Price, Ph.D. Jay Rathert Scott Hoover

1. Introduction

- 2. Process Tool Capability
- 3. Process Tool Defectivity
- 4. Summary and Recommendations

KLA: Quality Partner for the ICs that Power the Future of Automotive

Automotive Commitment and Expertise

Quality Control Solutions for Automotive ICs

The Appeal of a "Best Performing Tool" Program

Imagine a fab with two tools at every process step

Tool A has 99.99% yield at each step Tool B has 99.7% yield at each step

			Process Step Number																												
	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Tool A	99.99%	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	V	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Tool B	99.70%	В	В	В	В	В	В	В	В	В	В	В	В	В	В	E	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

Can choose between A or B at all 200 steps

Twenty-First Annual Automotive Electronics Council Reliability Workshop, April 30 - May 2, 2019

This is the "Best Performing Tool" Effect

Twenty-First Annual Automotive Electronics Council Reliability Workshop, April 30 - May 2, 2019

Always Start with a Fab-wide Yield Improvement Program

- Fab wide yield improvement is a long process (measured in quarters)
- The Best Tool frequently changes as the fab improves
- The goal is find the best tool wherever you are on that journey

The data needed to identify Best Performing Tools (BPT) flows naturally out of a comprehensive continuous improvement program

What is the Criteria for "Best Performing Tool"

- 1. Tools with High Step-Yield
 - Tool commonality analysis: de-convolve final wafer yield to the tool level
 - Time lag: tells you how the tool performed 1-3 months ago
- 2. Tools that are Available
 - Cycle time and queue time can be driving factors if there is only a single tool that is allowed for a given step.
 - Best tool → Best available tool
- 3. Process Tool Capability
 - Process window >> total variability
 - Measurement system capability
- 4. Process Tool Defectivity
 - Fewer added defects (all types)
 - Sufficient inspection sensitivity and sampling

Focus of this Paper

Agenda

1. Introduction

2. Process Tool Capability

- 3. Process Tool Defectivity
- 4. Summary and Recommendations

Common Process Control Measurements

top down view

Critical Dimension Uniformity

Film Uniformity

Understanding C_p (Process Capability Index)

C_p is a measure of how well the natural process variation fits within the spec limits

$$C_p = \frac{(USL - LSL)}{6\sigma}$$

USL = Upper Spec Limit LSL = Lower Spec Limit σ = Standard Deviation of the Process

Challenge of Assessing C_p for a Process Tool: Litho Example

1 field

Wafer

100 fields

- 1-100 die (or more)
- 10 Billion transistors

1000 die (or more)

Trillion transistors

Most fabs measure 5 to 50 locations

Complex Sources of Variability

ACLV: Field Across Chip Line Variation

Site Sampling Plan Must Reflect The Combined Variability

Sources of Variability II

Wafer-to-Wafer Variability

Wafer-to-wafer Variability within a lot

- First wafer effect
- Last wafer effect
- Every nth wafer
- Rogue wafer
- Random
- Tool Maintenance

Lot-to-Lot Variability

Lot-to-Lot Variability within the line

- Fab temperature
- Humidity
- Vibration
- Rogue Lot
- Random
- Tool maintenance

Target

High

Wafer and Lot Sampling Plan Must Reflect The Combined Variability

Finding the Best Performing Tool: C_p

Field Across Chip Line Variation Cross Wafer Line Variation Wafer-to-Wafer Variation Lot-to-Lot Variation Measurement-Tool Precision Sampling Plan

Is this the best performing tool?

(Sites per Field, Fields per Wafer, Wafers per Lot, % of Lots)

- The sampling plan must capture the sum of all sources of variation
- The sampling plan must calculate the correct average for the lot
- The more variable a component is, the more measurements should done at that level

Tool With Best C_p

18 Sites / Wafer; 2 Wafers / Lot

```
Both and the sharp the plaght Toolt B tools An Ighter Cp
```


Summary Table

Sources of Variation in The Measurement

Applicable Tool Set

Measurement	ACLV (X-Field)	X-Wafer	Waf-2- Waf	Lot-2- Lot	Sample Plan	Litho	Etch	Films	СМР
Critical Dimension	x	х	х	х	х	х	х		
Film Thickness		х	х	Х	х			x	x
Overlay	х	Х	х	Х	х	х			

Agenda

1. Introduction

- 2. Process Tool Capability
- 3. Process Tool Defectivity
- 4. Summary and Recommendations

Automotive Reliability Defects

- 1. Killer defects in test coverage gaps
- 2. Latent reliability defects which become activated after test

|X|

Quantifying Defectivity

- Most mature process defectivity comes from random defects from process tools
- Monitored using blank test wafers or using production material
 - Pre / Post inspection and subtraction
 - Mechanical and process step contribution

Defect Wafer Map

Tool Defectivity SPC Chart

Is There Enough Data?

Qual Frequency: Every Other Week

With sparse data Tool 1 appears to be cleaner

20 KLA Non-Confidential | Unrestricted

Is There Enough Data?

Qual Frequency: Every Week

More variability but Tool 1 is still cleaner

Is There Enough Data?

Qual Frequency: Every 4 Days

Mean = 21

Mean = 20

Hard to tell the difference

Is There Enough Data?

Qual Frequency: Every 2 Days

More data highlights the variability in Tool 1

Assessing the Best Performing Tool: Defectivity

Is There Enough Data?

Qual Frequency: Every Day

Must collect enough data to capture potential patterns

Time-Based Defect Patterns

There must be enough data to identify these patterns (or rule them out)

Position-Based Defect Patterns

First

Wafer

÷.

Wafe

Defects

Within-Lot Patterns

Within-Wafer Patterns

The defect density is as important as the defect count

- Is it concentrated in select wafers?
- Is it concentrated in select regions of the wafer?

Stapper Equation

Defect count is proportional to $1/X^n$ where X is the defect size

- At the 45nm DR, all defects greater than 45nm are potential killers
- All defects greater than 32nm are potential Latent Reliability Defects (LRD)

LRD's are typically a full design rule smaller than yield killers

Sensitivity

Daily Process Tool Qual Results

Tool # 1

Which tool is cleaner? It depends on the inspection sensitivity!

Tool # 2

You need to monitor both thresholds: Yield & Reliability

Agenda

1. Introduction

- 2. Process Tool Capability
- 3. Process Tool Defectivity

4. Summary and Recommendations

Summary

1. The best way to reduce reliability escapes is a fab-wide commitment to reduction in defectivity and process variability. A Best Performing Tool program can be layered on top of this to find the optimum tool at that particular point in time.

- 2. The Best Performing Tool is generally the one(s) with:
 - Low defectivity (measured with defect inspection)
 - Low variability (measured with metrology)

Available KLA Workshops for Auto Fabs, Tier 1s, and OEMs

- Latent Reliability Defects
- Fab-wide Baseline Defect Reduction Strategies
- Inspection and Metrology Strategy Re-Optimization with DR Shrink
- Excursion Monitoring Optimization
- Die Level Screening Methodologies (inline)
- Micro-Excursions and Yield Variation
- Improving Cycle Time
- Sampling Optimization (% lots, wafers/lot, area/wafer, sites/wafer, SEM review)
- Virtual Metrology and Fault Detection
- Precision, Accuracy, and Misclassification Risk
- Using Metrology to Expand the Process Window
- Others upon request...

For more information, please contact Kara.Sherman@kla.com

Thank You

 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +